nLab n-fold complete Segal space

Redirected from "weakly terminal object".
Contents

Context

Higher category theory

higher category theory

Basic concepts

Basic theorems

Applications

Models

Morphisms

Functors

Universal constructions

Extra properties and structure

1-categorical presentations

Internal (,1)(\infty,1)-Categories

Contents

Idea

nn-fold complete Segal spaces are a model for (∞,n)-categories, i.e. the homotopical version of n-categories.

We can view strict n-categories as n-fold categories where part of the structure is trivial; for example, strict 2-categories can be described as double categories where the only vertical morphisms are identities. nn-fold Segal spaces similarly result from viewing (,n)(\infty,n)-categories as a special class of nn-fold internal (,1)(\infty,1)-categories in ∞-groupoids.

If 𝒞\mathcal{C} is an (,1)(\infty,1)-category, then (,1)(\infty,1)-categories internal to 𝒞\mathcal{C} can be defined as certain simplicial objects in 𝒞\mathcal{C} (namely those satisfying the “Segal condition”). Thus nn-fold internal (,1)(\infty,1)-categories in \infty-groupoids correspond to a class of nn-simplicial \infty-groupoids, and nn-fold Segal spaces are defined by additionally specifying certain constancy conditions.

To describe the correct homotopy theory of (,n)(\infty,n)-categories we also want to regard the fully faithful and essentially surjective morphisms between nn-fold Segal spaces as equivalences. It turns out that, just as in the case of Segal spaces, the localization at these maps can be accomplished by restricting to a full subcategory of complete objects.

Definition

nn-fold Segal objects

If 𝒞\mathcal{C} is an (,1)(\infty,1)-category with pullbacks, we say that a simplicial object X :Δ op𝒞X_\bullet : \Delta^{op} \to \mathcal{C} satisfies the Segal condition if the squares

X m+n X n X m X 0 \array{ X_{m+n} &\to& X_{n} \\ \downarrow && \downarrow \\ X_{m} &\to& X_{0} }

are all pullbacks. Such Segal objects give the (,1)(\infty,1)-categorical version of internal categories as algebraic structures. (I.e. we have not inverted a class of fully faithful and essentially surjective morphisms.)

If Seg(𝒞)Seg(\mathcal{C}) denotes the full subcategory of Fun(Δ op,𝒞)Fun(\Delta^{op}, \mathcal{C}) spanned by the Segal objects, then this is again an (,1)(\infty,1)-category with pullbacks, so we can iterated the definition to obtain a full subcategory Seg n(𝒞)Seg^{n}(\mathcal{C}) of Fun(Δ n,op,𝒞)Fun(\Delta^{n,op}, \mathcal{C}) of Segal Δ n\Delta^{n}-objects in 𝒞\mathcal{C}.

We can now inductively define nn-fold Segal objects by imposing constancy conditions: An nn-fold Segal object in 𝒞\mathcal{C} is a Segal Δ n\Delta^{n}-object XX such that

  1. The (n1)(n-1)-simplicial object X 0:Δ n1,op𝒞X_0 : \Delta^{n-1,op} \to \mathcal{C} is constant
  2. The (n1)(n-1)-simplicial objects X iX_i are (n1)(n-1)-fold Segal objects for all ii.

When 𝒞\mathcal{C} is the (,1)(\infty,1)-category of spaces (or \infty-groupoids) we refer to nn-fold Segal objects as nn-fold Segal spaces.

Complete nn-fold Segal spaces

We now define fully faithful and essentially surjective morphisms between nn-fold Segal inductively in terms of the corresponding notions for Segal spaces:

Definition

A morphism XYX \to Y between nn-fold Segal spaces is fully faithful and essentially surjective if:

  1. X ,0,,0Y ,0,,0X_{\bullet,0,\ldots,0} \to Y_{\bullet,0,\ldots,0} is a fully faithful and essentially surjective morphism of Segal spaces
  2. X 1,,,Y 1,,,X_{1,\bullet,\ldots,\bullet} \to Y_{1,\bullet,\ldots,\bullet} is a fully faithful and essentially surjective morphism of (n1)(n-1)-fold Segal spaces
Definition

An nn-fold Segal space XX is complete if:

  1. The Segal space X ,0,,0X_{\bullet,0,\ldots,0} is complete.
  2. The (n1)(n-1)-fold Segal space X 1,,,X_{1,\bullet,\ldots,\bullet} is complete.
Remark

There are several equivalent ways to reformulate these inductive definitions. For example, a morphism f:XYf : X \to Y is fully faithful and essentially surjective if and only if:

  1. X ,0,,0Y ,0,,0X_{\bullet,0,\ldots,0} \to Y_{\bullet,0,\ldots,0} is essentially surjective.
  2. For all objects x,xX 0,,0x,x' \in X_{0,\ldots,0} the induced map on (n1)(n-1)-fold Segal spaces of morphisms X(x,x)Y(fx,fx)X(x,x') \to Y(fx,fx') is fully faithful and essentially surjective.
Theorem

The complete nn-fold Segal spaces are precisely the nn-fold Segal spaces that are local with respect to the fully faithful and essentially surjective morphisms. Thus the localization of the (,1)(\infty,1)-category of nn-fold Segal spaces at this class of morphisms is equivalent to the full subcategory of complete nn-fold Segal spaces.

This was first proved in Barwick’s thesis, generalizing Rezk’s proof in the case n=1n=1. Later, Lurie extended the notion of complete Segal objects to more general contexts than spaces, which allows an inductive definition of complete nn-fold Segal spaces as complete Segal objects in complete (n1)(n-1)-fold Segal spaces. The theorem for nn-fold Segal spaces then follows by inductively applying the generalization of Rezk’s theorem (for the case n=1n=1) to this setting.

Definition via the model category of simplicial sets

(…)

References

The definition originates in the thesis

  • Clark Barwick, (,n)(\infty,n)-CatCat as a closed model category PhD (2005)

which however remains unpublished. It appears in print in section 12 of

The basic idea was being popularized and put to use in

A detailed discussion in the general context of internal categories in an (∞,1)-category is in section 1 of

A Quillen adjunction relating n n -complicial sets to n n -fold complete Segal spaces:

For related references see at (∞,n)-category .

Last revised on May 2, 2023 at 05:48:46. See the history of this page for a list of all contributions to it.